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Rigorous Evanescent Wave Theory for Guided
Modes in Graded Index Optical Fibers

J. M. ARNOLD AND LEOPOLD B. FELSEN, FELLOW, IEEE

Abstmet-The evrmeseent wave thwry of nmdaf propagation in graded
in&x optkal fibe~ developed recentfy by Cfmudbary and Fefse~ is based

on certain Postufats wfdeb are examfned here. It is shown that an
mudytictty condition on the asymptotic expansion eoeffidents for tbe
medaf amplitudes on the fiber axisj av imposed by these authcm%shoufd be
replaced by the singk-vafuednes of these coefficients in a strip of the
complex eoordhmte plane. The andyticity amditfon is of questionable
validity because of the nonooiforndty of the asymptotic expansion on the
sxts. The previous wwdts of Choudhary and Fefsen are found to be

unaffected by this dmnge bat the method is now made rfgerom and need
not be justifkdj as before, by emnparison with asymptetfe expansiomv of

exaet solutions for speeiaf profifes. Afso developed here fs a unffonn
asymptotic approximation that is valid near the fiber axis and emmexts
with the leading term of the nonuniform evaneaeent wave theory formlda-
tion. Within this rigorous framework, the evanescent wave theory con-
tinues to provide a very useful and systematic procedure for cafeulathg
modaf efgenvaks and mndaf fieldv to arlhary orders in fnveme powers of
the large wavenumber k.

I. INTRODUCTION AND SUMMARY

T HE EVANESCENT wave theory of Choudhary and

Felsen [ 1]– [3], developed as an extension of geometri-

cal optics to permit the tracking of local plane wave fields

with complex phase, has been applied by these authors to

guided propagation in slab [4] and cylindrical [5] wave-

guides with a refractive index profile represented by an

analytic function of the transverse coordinates. To obtain

sufficient conditions for the determination of the coeffi-

cients in the asymptotic expansions of the modal eigenval-

ues and amplitudes in inverse powers of the large wave-

number k, Choudhary and Felsen utilized an analyticity

property satisfied by the true modal field on the wave-

guide axis. However, since their asymptotic expansion is

nonuniform near the axis, the imposition of analyticity on

the expansion coefficients is questionable. The procedure

was nevertheless rendered plausible since the results agree

term by term with those of available exact solutions in

slab or cylindrical configurations, when these special cases
were considered.

In a separate publication [6], the evanescent wave the-

ory for slab waveguides was reexamined. It was shown
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that the asymptotic modal amplitude coefficients must be

single valued in a strip of the complex transverse co-

ordinate plane, but that no statement of analyticity on the

waveguide axis (the transverse coordinate origin) need be

made. This new condition turns out to have precisely the

same effect as that of analyticity, but the method is now

rigorous and need not be justified by comparison with

special exact solutions. Derived as well was a uniform

asymptotic representation, which permits construction of

the leading asymptotic term of the nonuniform expansion,

and also of a local parabolic approximation near the

waveguide axis, as advocated by Choudhary and Felsen to

cope with the convergence problem of their expansion

near the origin. So formulated, the evanescent wave the-

ory continues to furnish a mechanism for systematic and

tractable determination of the asymptotic expansions of

the modal eigenvalues and eigenfunctions to any desired

order.

In the present paper, the method introduced in [6] for

the slab waveguide is applied to the fiber geometry. Since

the procedure for the fiber follows closely that of the slab,

we present the results and conclusions in summary form.

For details the reader is referred to the above-mentioned

paper [6].

II. THE ASYMPTOTIC EXPANSION

We consider a radially stratified medium with refractive

index n(r)

n*(r) =ng{l–f2(r)}> O<r<ca (1)

where no= n(0) and f(r) has the polynomial form

f=a,r H (I+ bjr’), aO>O, bj>O. (2)
j= 1

The real constants {bj} must be positive since we require

that the only real zero of ~ is at the origin on the real axis
[6], and to ensure proper behavior of the transv-erse modal

field solutions at infinity. The differential equation for the

radial portion + of the transverse modal field is

r$(r#)-{(@2f2-y2)r2-m2}+=0 (3)

with

#=n:k2_~’ (4)

and p representing the propagation coefficient along the

axial coordinate z. The integer m is the azimuthal mode
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number. Thus, the modal field u(r, 9, z) is expressed as closed contour) such that it encloses a strip surrounding

zf=+(r)exp(inzd) exp(i~z). (5) the real axis, and applying the residue theorem to (12)

with (6a), it is possible to identify N with the number of
Note that, since we shall be looking for solutions with zeros of ~ on tie real ~s Hence

/l-nOk as k~oe, the coefficient y2 is O(k) in (3). More-

over, for the profile satisfying (2), ~ must be a single $Cr-’Rdr=2~i(2q+m) (13)

valued function of r. By treating r as a complex variable

and performing certain contour integrations, this condi-

tion is used subsequently for determination of the asymp-

totic expansion coefficients of the propagation coefficient.

It then follows that linear terms of the form (aJr) in the

cylindrical profile function (2) are not admitted since the

profile must remain unchanged for negative values of r.

Such a restriction does not arise in the slab geometry [6].
By letting

(6a)

where q is a nonnegative integer, and the integer m

appears because @ has a zero of multiplicity m at r== O.

Since, from (8)-(10), the asymptotic expansion (8b) is

uniform everywhere except at the zeros off, R may be

replaced by this expansion under the integral sign in (13)

provided that c does not pass through any zeros of ~.

Hence, equating each asymptotic order separately in (13),

we obtain

$icr-’ROdr=O (lqa)

$Cr-’R,dr=2~i(2 q+m) (Mb)

+= exp
{J 1f dr (6b) $Cr-’RPdr=O, p>2. (14C)

one obtains the Riccati equation

r$ +R2=(n~k2f2 –y2)r2–m2 .

As in [6] we employ the asymptotic expansions
m

(nOk)-’y2=X- ~ (nok)-’xp
p=Q

and

R- ~ (nok)-p+lR P“
p=o

Equation (14a) is satisfied because of (9) and the assumed

analyticity off. The contour integrals in (14) represent all

(7) the conditions necessary to determine the coefficients

{x,}. From (lOa)

(8a) {
r-lR1=~~l XO–r-l$_(fr)

)
(15)

whence from (14b) and (2)

XO=2(2q+m+ l)ao. (16)

(8b) ~t follows from (9) and (10) that R, has the following

Thus, from (7), equating like powers of k,
p–1

r– lRps~p(r) + ~ 41J)r-@S+l) (17)

RO=(j2r2)1’2= –fr (9) S=o

in order to ensure vanishing of @ at infinity. The higher
where Fp( r ) is an analytic function of r. This form arises

order coefficients are obtained recursively from the equa-
from the combined effect of the operations performed in

tions
(10) to obtain RP from earlier terms in the sequence:

differentiation of Rp_,, which has a pole of order 2p --1
dRO

–2ROR1=XOr2+rX (lOa) at r= O, and then division by f, which has a zero at r ❑ =O.

Thus, the singularity in Rp is two orders higher than that

dR1
–2RoR2=X1r2–m2+rF -I-R? (lOb)

of RP _ ~. Equations (17) and (14) imply that the simple

pole coefficient must vanish, where

(18)dRP_l P-l
–2RoRp=Xp_1r2+r~ + z R. Rp_.,, p>2

~= 1 Since

(1OC)

J J

P– 1 ~(P)r–2s

r-lR$,dr= Fp(r)dr– ~ S 28 +c$pUnr (19)
provided that the eigenvalue coefficients {xp} are known. s-l

HI. MODE QUANTIZATION

To determine the {XP} we use contour integration as in

[6] but now in the complex r plane (see also [7]). Since r#J
must be single valued, we must have for arbitrary r

@(r)= @(re2’’i)=@(r)exp{ $Cr-1Rdr}

@Y (6b)) and therefore

(11)

$Cr- 1Rdr=2Nwi (12)

where N is an integer. By choosing c (which is an arbitrary

condition (18) eliminates all logarithmic terms from the

asymptotic expansion of @ in (6b) that results when the

exponential factors are expanded in inverse powers of k.

This prescription for determining the {xP} coefficients
was previously used by Choudhary and Felsen [5], but on

the questionable grounds of analyticity of the asymptotic

expansion at the origin, instead of the more rigorous

single-valuedness argument employed here. The results of

Choudhary and Felsen therefore remain valid, and the

evanescent wave theory guarantees provision of the ri.gor-

ous asymptotic expansion coefficients in (8a) and (8b) for
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the class of profiles covered by (2). Note that while the

expansion in (8b) for the modal amplitudes becomes in-

valid as r~O, the expansion in (8a) for the modal eigen-

values is unaffected by that restriction. A numerical algo-

rithm for the determination of the expansion coefficients

has been developed [8] and permits the calculation of the

eigenvalues to a high degree of accuracy.

IV. UNIFORM REPRESENTATION

Uniform asymptotic expansions, unlike the nonuniform

results of the evanescent wave theory, provide access to

the field on and near the fiber axis. Such expansions for

cylindrical fiber waveguides have been investigated

elsewhere [9], [10], and here we shall only summarize the

results. As in [6], the Liouville transformation from r to ~,

(~’-f;)($)’=f’-f:> .&=(% k)-’x (20)

together with

d< -112

)
+=(rz @ (21)

transforms (3) into

(22)

where h is an 0(1) function in k. If it remains O(1)

uniformly on some part of the real r axis, then it can there

be neglected as k+ce in (22), leading to the approxima-

tion

+fis-’’2@o (23)

where

d2@o

(
— + n:k’(.$;-g’)+ ; ]OO=O.

dt2
(24)

By integrating (20), $ is implicitly given by

j%’’-$; )d~’=~r[fr (r’) r’)-]o’]’’’dr’ (25)
to To

rO being the value of r for which j=fo. Analyticity of the

mapping is ensured by having $0 correspond to r. and

4=0 to r=O when

(26)

Solutions of (24) are related to the Whitaker functions.

In view of the boundary conditions at r= O and r~co

relevant here, they are known to reduce to the Laguerre

polynomial [11], [12]

Oo=tm+ ‘/2L\mJ{(nok)$2} exp{ –rzok$2/2} (27)

where
2(2q+m+l)=nok&. (28)

The two conditions (26) and (27) determine x, and it can

be proved that x found in this manner agrees to within its

first asymptotic order with its value from Section III,

similar to the planar waveguide calculation in [6]. Higher

order terms camot be checked directly, because they are

implicitly neglected in the uniform approximation (23).

This is an unsatisfactory feature of uniform approxima-

tions which finds a simple remedy in the Choudhary and

Felsen evanescent wave method. Here [5] it is quite easy

to get higher order terms for the eigenvalue whereas

improvement of (23) is rather involved.

As in [6], (27) can be used to obtain approximate

expressions for both large and small r. By approximating<

in the form

$(r)= qo(r)+(nok)-’ql( r)+ O(k-2) (29)

and evaluating q. and q ~ by using (29) in (20), it can be

shown that as k+ m ( r # O), ~ can be approximated

+c,(rj) ‘1/2r2q+m+l exp(-nok~~dr)

.exp[(2q+tn+l)~’( ~-~)dr’}

where

~,= (-1)”
~(nok)’.

by

(30a)

(30b)

Equation (30) is to be compared with [5], from which it

will be found that the evanescent wave approximation is

@-C(ti)-’/2exp{ -nok~~dr’}

(.exp (2q+nz+l)~r~ } (31)

where C is arbitrary. These two expressions differ only in

the fixed lower limits of zero in (30a), with some re-

arrangement to ensure that the integrals exist at this limit.

On the other hand, r can be permitted to go to zero in

the uniform approximation, which cannot be allowed in

the evanescent wave approximation as this approximation

is nonuniform at r= O. Thus, letting r2-O(k - 1), evaluat-

ing the appropriate expression (20) for ( as k+ m, and

substituting in (27), leads to

+-c2r~exp( –nOkaor2/2)L$m) (nokaOr2) (32a)

where

C2=af]2. (32b)

The approximation in (32) is uniform at the single point

r= O as k+ w, but will be accurate for fifite large k in a

small neighborhood of the origin. A uniformization proce-

dure for the evanescent wave theory, valid at r~O and

improving (32a), could be attempted by extracting in

closed form the exact solution for the parabolic profile

(see [4]). This procedure, yet to be tested, may provide
adequate numerical overlap with the region covered by

the nonuniform theory.

A final comment concerning the profile form in (2) is in

order. Choudhary and Felsen [5] considered also the case

where a linear term of the form a ~r is included. It was

pointed out by Ramskov-Hansen and Jacobsen [8] that

the asymptotic expansion of the modal propagation coef-
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ficient is insensitive to the algebraic sign of al (see [5]), [2]

although positive and negative values of al define differ-

ent refractive index profiles. The discussion in Section II [3]
shows that linear terms cannot be accommodated and

therefore this class of profiles must be excluded from
[4]

those that can be analyzed by the evanescent wave method. [5]
The same behavior with respect to al occurs for the slab

waveguide but here the different profiles corresponding to
[6]

positive and negative al are merely reflections of one

another about the waveguide axis and therefore have the [7]

same modal propagation coefficient. Thus, as shown in

[6], the asymmetric slab waveguide is included within the $;

framework of the evanescent wave theory.
[10]
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Waves and the Scattered
by Rou[gh Surfaces

of Arbitrary Slo-pe

EZEKIEL BAHAR, SENIOR MEMBER, IEEE

A&mct-Surface wavea as weff as Iateraf wavea are exalted when a

rough surface is Muninated by the radiation fields. In vfew of ahado~
these terms of the complete field expansions contribute sf@ieantly to the
totaf fields when the transndtter or receiver are near the rough surface. In
this work explidt expressions are derived for the eoupffng between the
radiation fields and the surface waveR which are guided at the frreguk
interface between two media. In the andys@ the slope of the rough
surface fs not reatrfcted and the solutions for both the horfrontafly and
Vertfdy ftofarired WaVt?5 arS ShOWll to SatfSfy rSdP~tY and ~ty

refatiomfdpca in electromagnetic theory. Speciaf conafderation is given to
Brewster angfea of inddence and scatter and stationary phase tedndqoea.

The fufl-wave solutions are dao applied to random and periodfc rough
surfacH.

I. INTRODUCTION

u SING A full-wave approach that accounts for

shadowing, it has been shown that the radiation fields

scattered from rough surfaces vanish in a continuous

manner as the observer moves into the shadow region [4].

Thus when the transmitter or receiver are near the rough

boundary, the major contributions to the total fields come
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from the surface wave and the lateral wave terms of the

complete field expansions [1], [2].

In this paper the full-wave approach is used to de-

termine the excitation of the surface wave when the rough

surface is illuminated by the radiation field. In addition

the scattered radiation fields excited by an incident surface

wave are determined. The Kirchoff approach or the

Rayleigh hypothesis for instance, cannot be used to solve

this problem [3], [6]. Both vertically and horizontally

polarized waves are considered and the solutions are

shown to satisfy duality and reciprocity relationships in

electromagnetic theory.

For the convenience of the reader, the principal elle-

ments of the full-wave approach, including the complete

expansions of the fields, the exact boundary conditions

and the rigorous set of coupled differential equations for

the wave amplitudes (generalized telegraphist’s equations)

are summarized in Section II. In addition explicit expres-

sions for the coupling coefficients are provided.
In Section III second-order iterative solutions for the

scattered fields are presented. To remove the small slc}pe

restriction inherent in the iterative solutions (while at the

same time retaining the relatively simple form of these
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