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Rigorous Evanescent Wave Theory for Guided
Modes in Graded Index Optical Fibers

J. M. ARNOLD anp LEOPOLD B. FELSEN, FELLOW, IEEE

Abstract—The evanescent wave theory of modal propagation in graded
index optical fibers, developed recently by Choudhary and Felsen, is based
on certain postulates, which are examined here. It is shown that an
analyticity condition on the asymptotic expansion coefficients for the
modal amplitudes on the fiber axis, as imposed by these authors, should be
replaced by the single-valuedness of these coefficients in a strip of the
complex coordinate plane. The analyticity condition is of questionable
validity because of the nonuniformity of the asymptotic expansion on the
axis. The previous results of Choudhary and Felsen are found to be
unaffected by this change but the method is now made rigorous and need
not be justified, as before, by comparison with asymptetic expansions of
exact solutions for special profiles. Also developed here is a uniform
asymptotic approximation that is valid near the fiber axis and connects
with the leading term of the nonuniform evanescent wave theory formula-
tion, Within this rigorous framework, the evanescent wave theory con-
tinues to provide a very useful and systematic procedure for calculating
modal eigenvalues and modal fields to arbitrary orders in inverse powers of
the large wavenumber k.

I. INTRODUCTION AND SUMMARY

HE EVANESCENT wave theory of Choudhary and
Felsen [1]-[3], developed as an extension of geometri-
cal optics to permit the tracking of local plane wave fields
with complex phase, has been applied by these authors to
guided propagation in slab [4] and cylindrical [5] wave-
guides with a refractive index profile represented by an
analytic function of the transverse coordinates. To obtain
sufficient conditions for the determination of the coeffi-
cients in the asymptotic expansions of the modal eigenval-
ues and amplitudes in inverse powers of the large wave-
number k, Choudhary and Felsen utilized an analyticity
propérty satisfied by the true modal field on the wave-
guide axis. However, since their asymptotic expansion is
nonuniform near the axis, the imposition of analyticity on
the expansion coefficients is questionable. The procedure
was nevertheless rendered plausible since the results agree
term by term with those of available exact solutions in
slab or cylindrical configurations, when these special cases
were considered.
In a separate publication [6], the evancscent wave the-
ory for slab waveguides was reexamined. It was shown

Manuscript received October 26, 1979; revised April 30, 1980. The
work of J. M. Arnold was supported by the Post Office Research Centre,
Martlesham, Suffolk, England, and the work of L. B. Felsen was sup-
ported by the Joint Services Electronics Program under Contract F496-
20-78C0074.

J. M. Arnold is with the Department of Electrical and Electronic
Engineering, University of Nottingham, Nottingham, England.

L. B. Felsen is with the Department of Electrical Engineering, Poly-
technic Institute of New York, Farmingdale, NY 11735.

that the asymptotic modal amplitude coefficients must be
single valued in a strip of the complex transverse co-
ordinate plane, but that no statement of analyticity on the
waveguide axis (the transverse coordinate origin) need be
made. This new condition turns out to have precisely the
same effect as that of analyticity, but the method is now
rigorous and need not be justified by comparison with
special exact solutions. Derived as well was a uniform
asymptotic representation, which permits construction of
the leading asymptotic term of the nonuniform expansion,
and also of a local parabolic approximation near the
waveguide axis, as advocated by Choudhary and Felsen to
cope with the convergence problem of their expansion
near the origin. So formulated, the evanescent wave the-
ory continues to furnish a mechanism for systematic and
tractable determination of the asymptotic expansions of
the modal eigenvalues and eigenfunctions to any desired
order.

In the present paper, the method introduced in [6] for
the slab waveguide is applied to the fiber geometry. Since
the procedure for the fiber follows closely that of the slab,
we present the results and conclusions in summary form.
For details the reader is referred to the above-mentioned

paper [6].
II. Tue ASYMPTOTIC EXPANSION

We consider a radially stratified medium with refractive
index n(r)

nz(r)=n%{ 1 -—fz(r)},

where n,=n(0) and f(r) has the polynomial form

0<r<o §))

M
f=a,r Hl(l+bjr2), ay>0, b,>0. Q)
=

The real constants {b;} must be positive since we require
that the only real zero of fis at the origin on the real axis
[6], and to ensure proper behavior of the transverse modal
field solutions at infinity. The differential equation for the
radial portion ¢ of the transverse modal field is

r 2 (r ) (=) -mPfe=0 )

with
y2=n3k?- g (4

and B representing the propagation coefficient along the
axial coordinate z. The integer m is the azimuthal mode
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number. Thus, the modal field u(r, 8, z) is expressed as
u=o¢(r)exp(im@)exp(ifz). (5)
Note that, since we shall be looking for solutions with
B~nok as k—co, the coefficient y? is O(k) in (3). More-
over, for the profile satisfying (2), ¢ must be a single
valued function of . By treating » as a complex variable
and performing certain contour integrations, this condi-
tion is used subsequently for determination of the asymp-
totic expansion coefficients of the propagation coefficient.
It then follows that linear terms of the form (a;r) in the
cylindrical profile function (2) are not admitted since the
profile must remain unchanged for negative values of r.

Such a restriction does not arise in the slab geometry [6].
By letting

_1.d¢
= 1 VAR N
R=¢"'r o (6a)
R
qb—exp{f—r—dr} (6b)
one obtains the Riccati equation
dR
r— +R?*=(n3k*f*—y*)ri-m?* . ™
As in [6] we employ the asymptotic expansions
=]
(nok)~'y2=x~ 3 (nok)™x, (8a)
p=0
and
o0
R~ 3 (ngk)7*'R, . (8b)
p=0
Thus, from (7), equating like powers of k,
Ro=(f7r?)""*=~fr ©)

in order to ensure vanishing of ¢ at infinity. The higher
order coefficients are obtained recursively from the equa-
tions

dR
—2R0R1=x0r2+r—‘-1,-;2 (102)
dR
—2R0R2=x,r2—m2+r—d;l +R? (10b)
drR, , 72!
_.2R0Rp=xp_lr2+r d’; Ly > RR, ., p>2
s=1
(10¢)

provided that the eigenvalue coefficients {,} are known.

1.

To determine the {x,} we use contour integration as in
[6] but now in the complex r plane (see also [7]). Since ¢
must be single valued, we must have for arbitrary #

MODE QUANTIZATION

¢(r)=¢(re’™)=¢(r)exp{$.r~'Rar} (11)
(by (6b)) and therefore
¢,r " 'Rdr=2Nwi (12)

where N is an integer. By choosing ¢ (which is an arbitrary
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closed contour) such that it encloses a strip surrounding
the real axis, and applying the residue theorem to (12)
with (6a), it is possible to identify N with the number of
zeros of ¢ on the real axis. Hence

$.r 'Rdr=27i(2g+m) (13)

where ¢ is a nonnegative integer, and the integer m
appears because ¢ has a zero of multiplicity m at r=0.
Since, from (8)-(10), the asymptotic expansion (8b) is
uniform everywhere except at the zeros of f, R may be
replaced by this expansion under the integral sign in (13)
provided that ¢ does not pass through any zeros of f.
Hence, equating each asymptotic order separately in (13),
we obtain

$.r"'Rodr=0 (14a)
$.r 'R dr=27i(2q+m) (14b)
$r"'R,dr=0, p>2. (14c)

Equation (14a) is satisfied because of (9) and the assumed
analyticity of f. The contour integrals in (14) represent all
the conditions necessary to determine the coefficients
{x,}- From (102)

PRy =4 xo=r 2 () (15)
whence from (14b) and (2)
Xo=2(2g+m+1)a,. (16)

It also follows from (9) and (10) that R, has the following
form:
p-1
r_lRp=FI',(r)+ > Py @sth

s=0

(17)

where F(r) is an analytic function of r. This form arises
from the combined effect of the operations performed in
(10) to obtain R, from earlier terms in the sequence:
differentiation of R,_;, which has a pole of order 2p -1
at r=0, and then division by f, which has a zero at r==0.
Thus, the singularity in R, is two orders higher than that
of R,_;. Equations (17) and (14) imply that the simple
pole coefficient must vanish, where

c§P=0.

(18)
Since
21 (p)y—2s

[r 'R dr= [E(r)ar— 3 = 2’

s s

+cPlnr (19)

condition (18) eliminates all logarithmic terms from the
asymptotic expansion of ¢ in (6b) that results when the
exponential factors are expanded in inverse powers of k.
This prescription for determining the {x,} coefficients
was previously used by Choudhary and Felsen [3], but on
the questionable grounds of analyticity of the asymptotic
expansion at the origin, instead of the more rigorous
single-valuedness argument employed here. The results of
Choudhary and Felsen therefore remain valid, and the
evanescent wave theory guarantees provision of the rigor-
ous asymptotic expansion coefficients in (8a) and (8b) for
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the class of profiles covered by (2). Note that while the
expansion in (8b) for the modal amplitudes becomes in-
valid as r—0, the expansion in (8a) for the modal eigen-
values is unaffected by that restriction. A numerical algo-
rithm for the determination of the expansion coefficients
has been developed [8] and permits the calculation of the
eigenvalues to a high degree of accuracy.

IV. UNIFORM REPRESENTATION

Uniform asymptotic expansions, unlike the nonuniform
results of the evanescent wave theory, provide access to
the field on and near the fiber axis. Such expansions for
cylindrical fiber waveguides have been investigated
elsewhere [9], [10], and here we shall only summarize the
results. As in [6], the Liouville transformation from r to £,

-8 %)= #=tu0)x (0)

together with

d 1/2
"’=( df) @ 1)
transforms (3) into
d*® u )
e {"(2)k2(€§—£2)+ & +h}<I>=0, p=g—m?
(22)

where # is an 0(1) function in k. If it remains 0(1)
uniformly on some part of the real r axis, then it can there
be neglected as k—o0 in (22), leading to the approxima-

tion
dg\ 172
o~(r2) e, (23)
where
d’o®
dgz" + {nng(gg—g2)+ E% }¢0=0. (24
By integrating (20), £ is implicitly given by
[(e2=8)"ag=["Tr20)-R]"a  @3)

ry being the value of » for which f=f,. Analyticity of the
mapping is ensured by having £, correspond to r, and
£=0to r=0 when

T6= [ (1) ar.

Solutions of (24) are related to the Whitaker functions.
In view of the boundary conditions at r=0 and r—oo
relevant here, they are known to reduce to the Laguerre
polynomial [11]}, [12]

By =£"* 2L (nok )£} exp( —nok$?/2}

(26)

(27
where
2Q2q+m+1)=nyké&3. (28)

The two conditions (26) and (27) determine x, and it can
be proved that x found in this manner agrees to within its
first asymptotic order with its value from Section III,
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similar to the planar waveguide calculation in [6]. Higher
order terms cannot be checked directly, because they are
implicitly neglected in the uniform approximation (23).
This is an unsatisfactory feature of uniform approxima-
tions which finds a simple remedy in the Choudhary and
Felsen evanescent wave method. Here [5] it is quite easy
to get higher order terms for the eigenvalue whereas
improvement of (23) is rather involved.

As in [6], (27) can be used to obtain approximate
expressions for both large and small r. By approximating &
in the form

E(r)=mo(r)+(nok) ™ 'my(r) +0(k?) (29)

and evaluating 7, and 7, by using (29) in (20), it can be
shown that as k—oo(r#0), ¢ can be approximated by

¢~C1(rf)_1/2r2‘1+’”“exp{ —nok [ 'fdr'}
0

-exp{(2q+m+ 1)]0'(”—; - ;;)dr’} (302)

where
Cl -

(nok)?. (30b)

Equation (30) is to be compared with [5], from which it
will be found that the evanescent wave approximation is

¢~C(rf)_1/zexp{ —nokfrfdr’}

(=D*
q!

apdr’

exp{(2q+m+1)f } (31)

where C is arbitrary. These two expressions differ only in
the fixed lower limits of zero in (30a), with some re-
arrangement to ensure that the integrals exist at this limit.

On the other hand, r can be permitted to go to zero in
the uniform approximation, which cannot be allowed in
the evanescent wave approximation as this approximation
is nonuniform at r=0. Thus, letting r2~0(k~'), evaluat-
ing the appropriate expression (20) for ¢ as k— o0, and
substituting in (27), leads to

¢~C,r™exp( — noka0r2/2)LfI'")(noka0r2) (32a)

where
C,=al?. (32b)

The approximation in (32) is uniform at the single point
r=0 as k—o0, but will be accurate for finite large & in a
small neighborhood of the origin. A uniformization proce-
dure for the evanescent wave theory, valid at r—0 and
improving (32a), could be attempted by extracting in
closed form the exact solution for the parabolic profile
(see [4]). This procedure, yet to be tested, may provide
adequate numerical overlap with the region covered by
the nonuniform theory.

A final comment concerning the profile form in (2) is in
order. Choudhary and Felsen [5] considered also the case
where a linear term of the form a,r is included. It was
pointed out by Ramskov-Hansen and Jacobsen [8] that
the asymptotic expansion of the modal propagation coef-
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ficient is insensitive to the algebraic sign of a, (see [5]),
although positive and negative values of @, define differ-
ent refractive index profiles. The discussion in Section II
shows that linear terms cannot be accommodated and
therefore this class of profiles must be excluded from
those that can be analyzed by the evanescent wave method.
The same behavior with respect to @, oceurs for the slab
waveguide but here the different profiles corresponding to
positive and negative @; are merely reflections of one
another about the waveguide axis and therefore have the
same modal propagation coefficient. Thus, as shown in
[6], the asymmetric slab waveguide is included within the
framework of the evanescent wave theory.
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Excitation of Surface Waves and the Scattered
Radiation Fields by Rough Surfaces
of Arbitrary Slope

EZEKIEL BAHAR, SENIOR MEMBER, IEEE

Abstract-—Surface waves as well as lateral waves are excited when a
rough surface is illuminated by the radiation fields. In view of shadowing,
these terms of the complete field expansions contribute significantly to the
total fields when the transmitter or receiver are near the rough surface. In
this work explicit expressions are derived for the coupling between the
radiation fields and the surface waves which are guided at the irregular
interface between two media. In the analysis, the slope of the rough
surface is not restricted and the solutions for both the horizontally and
vertically polarized waves are shown to satisfy reciprocity and duality
relationships in electromagnetic theory. Special consideration is given to
Brewster angles of incidence and scatter and stationary phase techniques.
The full-wave solutions are also applied to random and periodic rough
surfaces.

I. INTRODUCTION

SING A full-wave approach that accounts for
shadowing, it has been shown that the radiation fields
scattered from rough surfaces vanish in a continuous
manner as the observer moves into the shadow region [4].
Thus when the transmitter or receiver are near the rough
boundary, the major contributions to the total fields come
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from the surface wave and the lateral wave terms of the
complete field expansions [1], [2].

In this paper the full-wave approach is used to de-
termine the excitation of the surface wave when the rough
surface is illuminated by the radiation field. In addition
the scattered radiation fields excited by an incident surface
wave are determined. The Kirchoff approach or the
Rayleigh hypothesis for instance, cannot be used to solve
this problem [3], [6]. Both vertically and horizontally
polarized waves are considered and the solutions are
shown to satisfy duality and reciprocity relationships in
electromagnetic theory.

For the convenience of the reader, the principal ele-
ments of the full-wave approach, including the complete
expansions of the fields, the exact boundary conditions
and the rigorous set of coupled differential equations for
the wave amplitudes (generalized telegraphist’s equations)
are summarized in Section II. In addition explicit expres-
sions for the coupling coefficients are provided.

In Section IIT second-order iterative solutions for the
scattered fields are presented. To remove the small slope
restriction inherent in the iterative solutions (while at the
same time retaining the relatively simple form of these
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